
1.  Introduction
Assessments of climate sensitivity, the warming due to a doubling of CO2, in the sixth phase of CMIP (see 
Table A1 for all abbreviations) indicate that some climate models warm more than earlier models (e.g., Meehl 
et al., 2020; Zelinka et al., 2020). Some argue that a group of especially “hot” models are outside the plausible 
range of warming (Hausfather et al., 2022; Tokarska et al., 2020). Recent work indicates that a third of CMIP6 
models may, in fact, have sensitivity of greater than 5K (He et al., 2022). Several of the high-sensitivity models 
are versions of, or closely related to, the Community Earth System Model (CESM).

Climate sensitivity in CESM has increased through the last three generations as the atmospheric component, CAM, 
has progressed from CAM4 with a sensitivity of 3.0 K to CAM5 at 4.1 K and the most recent version,  CAM6, 
at 5.2 K. From all indications, this increase arises mainly from cloud feedbacks becoming more positive through 
the generations. This is indicated in reports comparing CAM4 and CAM5 by Gettelman et  al.  (2012) while 
Bacmeister et al. (2020) and Gettelman et al. (2019) discuss cloud feedbacks and climate sensitivity in CAM6. 
Bacmeister et al. (2020) shows that in very long simulations, the climate sensitivity of CESM2 is, in fact, larger 
than 5.2 K due to methodological reasons as well as a strong positive feedback over the Southern Ocean that 
emerges after substantial warming. Bjordal et al.  (2020) also focus on the Southern Ocean, showing that the 
negative “cloud phase feedback” (clouds becoming more reflective as they become less glaciated) reduces and is 
overtaken by the positive cloud amount feedback once they are dominated by the liquid phase. Similarly, changes 
in the amount of ice in the present-day climate is reported to be a major factor in the increase in estimates of 
climate sensitivity from CMIP5 to CMIP6 (Zelinka et al., 2020).

Those studies focused on changes in clouds that impact climate sensitivity, but they do not provide much in 
terms of evaluating the simulated clouds. Evaluating climate model representations of clouds is encumbered by 
a number of factors that are all grounded in the reality that clouds are complicated, multi-faceted features that 
interact with numerous processes across many scales. Observing clouds is similarly complicated by their complex 
nature, and must necessarily include many subjective choices that combine with instrument and sampling 
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uncertainties. In spite of the challenges, the past several decades have seen unprecedented advancements in 
long-term satellite-based cloud observations (e.g., Stubenrauch et al., 2013). There are now several data sets that 
provide close to or more than two decades of high-quality cloud observations. To facilitate comparison with these 
observations, “satellite simulators” that emulate satellite products based on the model's atmospheric state have 
been developed for climate models and are provided by COSP (Bodas-Salcedo et al., 2011). The use of satellite 
simulators has spurred systematic evaluation of climate model clouds over the past decade. Kay et al.  (2012) 
provided a detailed comparison of clouds in CAM4 and CAM5, and showed that CAM5 produced substantially 
improved clouds over the older CAM4. Klein et al. (2013) used the ISCCP simulator included in COSP to assess 
the improvement in clouds from CMIP3 to CMIP5, and concluded that on the whole climate model clouds showed 
an improvement across the generations by increasing cloud cover and reducing reflectivity to better match obser-
vations. Nam et al. (2012), however, stress that CMIP5 models still exhibit a pervasive “too-few-too-bright” bias, 
and indicate that the bias is especially prevalent in shallow cumulus regimes and that may lead to increased spread 
in cloud feedbacks among models. Recently Vignesh et al. (2020) used COSP outputs to compare the cloud cover 
between CMIP5 and CMIP6 versions of 10 models, including CESM (comparing CAM4–CAM6), and Zhang 
et al. (2019) provide a detailed evaluation of the E3SM atmosphere model (EAM, which is closely related to 
CAM, and is another high-sensitivity model, Golaz et al., 2019). Both of those studies show some improvements 
over earlier generations of models.

This study uses COSP and satellite observations to evaluate the simulation of clouds across three generations 
of the CESM lineage (described in Section 2.1): CAM4 and CAM5 from previous generations and CAM6 and 
E3SM representing the current generation. We include E3SM because it is similar to CESM2(CAM6) but took a 
slightly different development path from CESM1(CAM5). This analysis provides a detailed account of the cloud 
performance across the models and provides an opportunistic (if incomplete) picture of how different choices in 
model development and tuning impact the cloud climatology. The updated observations, described in Section 2.2, 
provide a long-term record of radiative fluxes and cloud cover that allow robust statistical evaluation of the 
model performance. Spatial errors in cloud radiative effect (CRE) and cloud cover are reported in Section 3. To 
connect the spatial biases to the large-scale environment, we conditionally sample the cloud-related quantities in 
dynamical regimes which provides additional context for the biases and highlights specific regimes that should be 
targeted for additional, process-based evaluation. The analysis presented here indicates that clouds have improved 
through the model generations, but the differences among CAM5, CAM6, and E3SM are relatively small. To 
continue to improve the models, we suggest that future development should use the satellite observations of cloud 
properties and vertical structure as constraints along with the top-of-atmosphere radiative fluxes which have been 
tuning targets for all of these models.

2.  Methods
2.1.  Models and Simulations

The global atmosphere models used in this study share a common lineage and represent three distinct generations 
of climate model development. The older generations are represented by CAM4 and CAM5. CAM4 was used as 
the atmospheric component of the Community Climate System Model (version 4) which was released in 2010 
(Gent et al., 2011). The parameterized physics of CAM4 was an update from the earlier CAM3 that dated back to 
2004. The modeling system was renamed the Community Earth System Model (version 1) using CAM5, which 
was also released in 2010 (Hurrell et al., 2013). The change to CAM5 introduced many changes to the parame-
terized physics, including whole-cloth changes in the representations of shallow convection, cloud microphysics, 
radiative transfer, and the introduction of interactive, emissions-based aerosol effects.

The current generation of models is represented by two closely related models that were both developed start-
ing from CAM5. The direct successor to CESM1(CAM5) is CESM2(CAM6) (Danabasoglu et al., 2020). The 
chief changes from CAM5 to CAM6 are in the representation of moist turbulence and clouds. Shallow cumulus 
convection and boundary layer turbulence are unified with grid-scale cloud physics using the CLUBB framework 
which replaced separate schemes in CAM5 (Bogenschutz et al., 2018). Other changes include updated cloud 
microphysics (Gettelman & Morrison, 2015), aerosol treatment (Liu et al., 2016), and changes to orographic 
and gravity wave drag. The E3SM, version 1 (Golaz et al., 2019) was developed independently from CESM2(-
CAM6), but followed a similar development trajectory. While the models are similar, there are both structural 
and parametric differences that impact the simulated climate. The parameterized physics of the models are very 
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similar: they use the same schemes for turbulence and shallow convection (CLUBB), microphysics, and radiation. 
The changes to the drag parameterizations in CAM6 are not used in E3SM. There are some enhancements to the 
E3SM convection scheme, described by Xie et al. (2018), that are not included in CAM6. The tuning of the phys-
ics differs between the models (Rasch et al., 2019), which contributes to differences in their simulated climates.

All three versions of CAM that are presented here use the same finite volume dynamical core (Lin, 2004; Lin & 
Rood, 1997) on the same 0.9° × 1.25° latitude-longitude grid. The number of vertical levels increases slightly 
with model version (26 in CAM4, 30 in CAM5, and 32 in CAM6), but the model top remains at 2 hPa (40 km) 
and the lowest model level is also the same at about 100 m thickness. Notable structural differences between 
EAM and CAM6 are that (a) EAM uses a spectral element dynamical core on a cubed-sphere grid, and (b) EAM 
has higher vertical resolution with 72 levels and model top near 0.1 hPa (60 km) and the lowest level thickness 
of about 20 m (Xie et al., 2018).

The simulations used here are “AMIP” experiments in the colloquial sense that they are forced by monthly 
sea-surface temperature and sea-ice extent derived from observations. Prescribing the ocean boundary condition 
keeps the model close to the observed climate while allowing the model's dynamics and parameterized physics 
to interact freely; alternatives such as nudging to the observed state provide stronger constraints for physics 
evaluation but inhibit feedbacks between the physics and dynamics that may impact free-running climate simu-
lations. The CAM4 and CAM5 simulations are taken from Kay et al. (2012) and cover years 2001–2010. The 
CAM6 simulation follows the CMIP protocol for “AMIP” experiments and covers 1979 to 2014. This CAM6 
AMIP simulation is a separate integration from the one in the CMIP6 archive, which extends back to 1950; the 
results presented are consistent with analysis of that experiment. The E3SM output was obtained from the CMIP6 
archive; it is much longer than the protocol requests, covering 1870–2014. Three E3SM ensemble members are 
available in the archive, and we show results from “r1i1p1f1,” but in our examination the results are not sensitive 
to choice of realization. The E3SM data includes ISCCP and CALIPSO simulator output, but MISR and MODIS 
simulator output were not available. In an attempt to optimize the comparisons between the models and observa-
tions we evaluated the impact of the sampling interval for much of the analysis presented; in general, there is little 
sensitivity to choosing different intervals, and we chose to use all model data from 2001 to the end of the simu-
lation. As described below, the observational products extend beyond the simulations, and we use that extended 
time series wherever possible. Monthly means are used for all analyses, and we focus on comparing the models 
to satellite observations using COSP (Bodas-Salcedo et al., 2011); that is, the models' own cloud fraction fields 
are never used. The version of COSP in CAM4 and CAM5 is COSP1.3 (Kay et al., 2012). The version was later 
updated to COSP1.4 (Kay et al., 2016), which was used extensively, including in E3SM (Zhang et al., 2019) and 
CESM1 (Kay et al., 2018; Lenaerts et al., 2020; Takahashi et al., 2019); COSP1.4 introduced CALIPSO cloud 
phase diagnostics. The COSP version was updated to COSP2 in CAM6; COSP2 is a refactoring of the original 
code to increase performance, flexibility, and ease of implementation (Swales et al., 2018). COSP variants differ 
only in their performance and diagnostics available, not in their answers.

2.2.  Satellite Observations and Reanalysis

Our observation sources are gridded data from CALIPSO, ISCCP, MISR, and MODIS. Although COSP 
includes simulators for CloudSat and Parasol, they are not used here. In addition, CERES EBAF is used for 
radiative fluxes (including CRE). The ERA5 reanalysis (Hersbach et al., 2020) is used for any meteorological 
fields, specifically vertical pressure velocity, and in all cases ERA5 is sampled based on the satellite data 
availability. As detailed next, efforts were made to use recent versions of all observational products and to 
obtain monthly data for as long a record as possible. Our choices appear to mirror those in Zhang et al. (2019), 
but we include updates to all the products (except CALIPSO, for which the same version is used) along with 
extending the records to near present.

2.2.1.  CERES

We use monthly observations of CRE from the CERES EBAF (Edition 4.1) product (Loeb et al., 2018). This 
Level 3 product is on a regular 1° × 1° latitude-longitude grid, and covers the period 2000-03 to 2021-12. With 
Edition 4, the clear-sky fluxes were changed substantially from previous versions (Loeb et al., 2018). The version 
used here (Edition 4.1) is a minor update from Edition 4.0 used by (Zhang et al., 2019).
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2.2.2.  CALIPSO

We use version 3.1.2 of the GOCCP product, which is a derived Level 3 product (Chepfer et al., 2010). Currently 
this data set spans 2006-06 to 2020-12. Derived from active remote sensing (lidar), this product accurately detects 
vertically resolved clouds within 480 m height bins (from 240 m to nearly 20 km above the surface). We follow 
the recommendation from the GOCCP developers to use the data on a 2° × 2° latitude-longitude grid. Total, high, 
middle, and low cloud fractions are provided as separate fields. The lidar observations are impacted by the South 
Atlantic Anomaly (Noel et al., 2014); this appears to impact high cloud temporal trends, especially after 2016, 
but in long-term averages excluding the SAA region makes very small differences to the results presented here, 
so we include it for simplicity.

2.2.3.  ISCCP

ISCCP provides data merged from a variety of satellites dating back to 1983. Recently the full data set has 
been reprocessed to produce the ISCCP-H series data, which is used here (W. B. Rossow et al., 2022; Young 
et al., 2018). Monthly cloud-top pressure versus cloud-optical-depth histograms were derived by averaging the 
3-hourly data. The data is on a 1° × 1° latitude-longitude grid and covers 1983-07 to 2017-06. Total, high, middle, 
and low cloud fractions were derived following the conventional definitions (e.g., Kay et al., 2012), including 
excluding τ < 0.3. There is a substantial decreasing trend in global total cloud cover in the ISCCP data set from 
1983 until the late 1990s; incomplete geostationary satellite coverage is also apparent in the spatial patterns of 
cloud cover during that period (see also Norris & Evan, 2015). These artifacts are no longer apparent after the 
late 1990s (e.g., Norris & Evan, 2015). For simplicity, and for added consistency with the simulations and other 
observational data, we present analysis of ISCCP using the period 2001–2016. Results that include 1983–2000 
are qualitatively consistent with what is presented. To provide confidence in the climatological record while 
excluding the earlier years requires using the ISCCP-H series; previous studies (e.g., Kay et al., 2012; Zhang 
et al., 2019) were limited to the ISCCP-D series which stops in 2009.

2.2.4.  MISR

The MISR data has been updated to version 7 of the algorithm described by Marchand et al. (2010) (see also 
Hillman et  al.,  2017; Hillman et  al.,  2018). The data used here covers 2000-03 to 2021-11. Because it uses 
multiple viewing angles, the MISR product is particularly well-suited for detecting cloud-top height, especially 
of low-level clouds. The MISR data is only available over ocean. Total, high, middle, and low cloud fractions 
were derived from the CTH-τ histograms in the same way as for ISCCP and MODIS. As with the other products 
τ < 0.3 was neglected, as such tenuous clouds are not well-observed by MISR. Some retrievals fail to record a 
confident cloud-top height and are placed into a separate bin; these are included in the total cloud fraction, but do 
not contribute to high, middle, or low cloud fraction.

2.2.5.  MODIS

The MODIS COSP Level-3 product, or MCD06COSP, is updated to span 2002-07 to 2022-07, as described by 
Pincus et al. (2022). The monthly data is used here. MODIS distinguishes partly cloudy pixels from cloudy pixels, 
and in previous assessments (e.g., Kay et al., 2012; Zhang et al., 2019) partly cloudy pixels were not included, so 
MODIS-based estimates of cloud cover were systematically lower than ISCCP (Pincus et al., 2012, 2022). The 
MODIS CTP-τ histograms used here combine cloudy and partly cloud pixels and normalize by the pixel count 
from the cloud retrieval. The MCD06COSP product combines observations from the Aqua and Terra spacecraft, 
and is restricted to daytime observations to be consistent with COSP output.

In general, analyses are restricted to regions equatorward of 60° latitude. This is because the passive observa-
tions become unreliable over ice-covered regions. The CALIPSO observations are considerably more reliable at 
higher latitudes, but we usually consider only equatorward of 60° latitude to allow comparison across products. 
The exception is the presentation of maps, which show results in the polar regions. To make direct, quantitative 
comparisons between satellite products and the models, some remapping is required. To accomplish this, we 
use NCO's ncremap with its native, conservative remapping algorithm (Zender, 2008). Testing revealed nearly 
identical results when using ESMF's conservative algorithm and somewhat larger differences when using Temp-
estRemap's algorithm (Ullrich & Taylor,  2015). Slight differences in global averages are obtained for global 
mean total cloud fraction between the original and remapped fields. All the grids are of similar spatial resolution 
(CALIPSO being the coarsest at 2°), and sensitivity testing with different grid choices showed no noticeable 
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differences, so we chose to use CAM's 0.9° × 1.25° grid for convenience. One noticeable impact of the remapping 
occurs near the sea ice edge in the MISR observations; errors in the remapped data around the ice edge can appear 
as artifacts in the climatology, but these artifacts have little impact on the presented results.

2.3.  Dynamical Regimes and Statistical Methods

To better understand the differences across the model versions, we investigate the distribution and characteris-
tics of clouds conditionally sampled based on the large-scale environment. In particular, we rely on the vertical 
pressure velocity at 500 hPa (ω500) to partition dynamical regimes, separating convective and subsiding regimes 
(following, e.g., Bony et al., 2004).

Using monthly mean ω500 is appropriate over tropical oceans (Wyant et al., 2006). In the extratropics, the long 
averaging time tends to mix the ascending and descending regimes of cyclones, so the distribution of ω500 (P(ω500)) 
tends to be focused around zero. It is more informative to use daily ω500 (e.g., Grise & Medeiros, 2016), but daily 
data is not available for all the simulations so we show the results from the monthly values as a broad-scale 
perspective on the Southern Ocean region.

In addition to the dynamical regimes decomposition, we also desire metrics for model performance, and here 
we are particularly concerned with evaluating the spatial distribution of cloud properties. A common measure 

of model error for a spatial field is the root-mean square error: 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =

√

𝑁𝑁−1
∑

𝑖𝑖
(𝑋𝑋𝑀𝑀 −𝑋𝑋𝑅𝑅)

2 . Here the M 
and R subscripts denote the model solution and the reference (usually observation), respectively. Usually the 
simple average shown is replaced with the area-weighted average appropriate for the spatial mesh. The RMSE 
provides a useful, concise metric for the difference, but it blends different aspects of the error. Taylor (2001) 
provides a deconstruction of RMSE into the “bias” (i.e., difference of the means) and the “centered pattern RMS 
difference” which can be expressed in terms of the variances and correlation coefficient between the two fields. 
That motivated a graphical presentation now known as a Taylor diagram that summarizes the statistics. A differ-
ent approach to decompose the spatial error is to square the RMSE (i.e., the MSE) and normalize by the spatial 

variance of the reference field, that is, 𝐴𝐴 NMSE = 𝑁𝑁
−1
∑

𝑖𝑖
(𝑋𝑋𝑀𝑀 −𝑋𝑋𝑅𝑅)

2
∕𝑁𝑁−1

∑

𝑖𝑖

(

𝑋𝑋𝑅𝑅 −𝑋𝑋𝑅𝑅

)2

 . Similar to Taylor's 
decomposition of the centered pattern RMS difference, normalized mean square error (NMSE) can be decom-
posed into three terms that involve the spatial standard deviations (σ) and the correlation coefficient between the 
fields (r). The components have been termed the unconditional bias, the conditional bias, and the phase error: 

NMSE = U + C + P (Simpson et al., 2020). Briefly, the unconditional bias, 𝐴𝐴

((

𝑋𝑋𝑀𝑀 −𝑋𝑋𝑅𝑅

)

𝜎𝜎
−1

𝑅𝑅

)2

 , is related to 
the amplitude error (i.e., the difference of the means of the fields); the phase error is given by 1 − r 2; and the 
conditional bias contains both amplitude and phase errors and is expressed as 𝐴𝐴

(

𝑟𝑟 − 𝜎𝜎𝑀𝑀𝜎𝜎
−1

𝑅𝑅

)2 . The conditional bias 
can be interpreted using the scaled variance ratio, 𝐴𝐴 SVR = (𝜎𝜎𝑀𝑀∕𝜎𝜎𝑅𝑅)

2
NMSE ; when SVR > NMSE it indicates too 

much spatial variance in the model field (see Simpson et al., 2020, for additional discussion). The information 
contained in these two approaches is the same, but they provide slightly different perspectives on the errors. 
Taylor diagrams usually emphasize the spatial correlation and difference in the spatial variance. The NMSE, 
especially when visualized as a stacked bar graph, provides a more direct, non-dimensionalized comparison 
between the amplitude and phase errors.

The passive instrument data sets and simulator output are largely organized into joint histograms of 
cloud-top-pressure (or height; CTP/CTH) and cloud optical depth (τ). These histograms, pioneered in ISCCP, 
organize clouds along two dimensions that are directly associated with the SWCRE (τ) and LWCRE (CTP or 
CTH). For each grid cell (model or gridded observational product), the histograms are constructed by binning 
the data into a coarse CTP-τ grid. It should be noted, however, that only the detected cloud is recorded in this 
data structure (i.e., non-cloud is not included). This has the advantage that summing the values provides the 
cloud fraction, but the disadvantage is that the total is not unity so these are not true histograms (i.e., they are not 
approximations of the probability distribution). The monthly histograms are averages of the higher frequency data 
(e.g., 3-hourly for ISCCP, 1-hr radiation timesteps for the models).

The CTP-τ histograms provide more information than just the cloud fraction, but the added dimensionality can 
make it difficult to make holistic assessments. One common method to use more of the histogram information is 
to use the marginal distributions (i.e., summing over either the vertical or optical depth dimension, see e.g., Kay 
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et al., 2012). Another method that has made use of the histograms is to use them to cluster data into “weather 
states” (e.g., Tselioudis et al., 2013; Tselioudis et al., 2021). In order to perform such clustering, a distance metric 
between histograms must be defined. The functions that are used for that distance may themselves be useful 
as diagnostics and we apply one here. The most common choice of distance metric is the Euclidean distance 
(Wu, 2012); other options such as the relative entropy are also sometimes used. In most approaches the resulting 
distance provides a measure of the cumulative difference of the histograms by pairwise comparison of elements; 

for example, the Euclidean distance is 𝐴𝐴

√

∑

𝑖𝑖
(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)

2 where x and y are CTP-τ histograms and i is the “flattened” 
index. Such approaches are efficient and easy to implement, but they neglect the information encoded in the 
CTP-τ space.

To make more use of the two-dimensional information contained in CTP-τ histograms, we adopt an alternative 
metric for the distance between any two histograms: the Earth Mover's Distance (EMD), which is also often called 
the Wasserstein distance (Engquist & Froese, 2014; Villani, 2003). The EMD is the solution to an optimal trans-
port problem that can be conceptually understood as providing the solution that allows the transformation of one 
distribution to another such that the movement of “mass” (or here probability of cloud detection) is minimized. 
To apply the EMD algorithm, CTP-τ histograms are normalized so they sum to unity; normalizing the individual 
histograms means that the EMD metric does not include the mean bias, which can be discerned anyhow by direct 
comparison of the total cloud fraction. To calculate the “distance” that probability must be transported, we use 
the simple Euclidean distance between bins of the CTP-τ histogram assuming uniform spacing (i.e., the penalty 
associated with transporting to an adjacent τ or CTP bin is constant). The advantage of using the EMD to compare 
histograms is that it penalizes slight shifts in the cloud distribution less than large shifts. The disadvantage of 
the EMD is that it is much more computationally demanding than simpler metrics; we make use of the Python 
Optimal Transport package (Flamary et al., 2021). The result of solving the optimal transport problem provides a 
scalar value that represents the minimal amount of probability that needs to be transported to make the two input 
distributions match; that is, it provides a metric for how different the distributions are with zero indicating they 
are identical and larger values indicating greater difference.

3.  Results
Top-of-atmosphere CRE has been an explicit tuning target during development of these models with particular 
attention paid to the global and time average. Figure 1 shows the comparison with CERES EBAF Ed4.1, which 
was developed after CAM4 and CAM5 (and was not used during CAM6 development). In general, CAM6 shows 
improvements compared to the earlier versions, though CAM4's LWCRE is remarkably successful in terms of 
global mean bias and RMSE. Although they are similar models, E3SM shows slightly larger shortwave bias and 
RMSE than CAM6, and slightly smaller longwave errors. Some additional context of these spatial errors can be 
gleaned with the NMSE (defined in Section 2), which can be decomposed into unconditional, conditional, and 
phase error contributions. Figure 2 shows the NMSE by component for SWCRE and LWCRE for all four models. 
The total error, given by the NMSE, is smallest in E3SM for both SWCRE and LWCRE. Figure 2 uses data equa-
torward of 60° latitude; using the full global domain results in CAM6 having a slightly smaller SWCRE NMSE 
than E3SM, but in both cases the values are quite close between the models. For both CAM6 and E3SM, the 
improvement from CAM5 is mainly from reducing the unconditional bias in the longwave while the shortwave 
improves chiefly by improving the phase error. The phase error is largest in CAM4 showing that even though 
global mean bias is small, the regional features are erroneous.

While the TOA CRE is a crucial quantity for climate models to capture, it is not a sufficient evaluation of the 
quality of the cloud climatology in a model. Both cloud amount and cloud albedo impact SWCRE, for example, 
so it is possible to match observations of SWCRE with unrealistic cloud physical properties; this situation is 
common in models and leads to the “too-few-too-bright” bias (Nam et al., 2012). With relatively long obser-
vational records and the use of satellite simulators to facilitate comparison, several aspects of cloud cover can 
be evaluated with reasonable confidence. Using both CRE and cloud cover provides a stronger constraint on a 
model's cloud climatology than either provides separately. This combination is what we demonstrate in the rest 
of this section with an evaluation of the cloud cover climatology.

Figure 3 shows the climatology of cloud cover for ISCCP, MISR, and CALIPSO in the top row. Because of the 
many differences in these data sets (Pincus et al., 2012), the cloud cover differs across the observations. These 



Earth and Space Science

MEDEIROS ET AL.

10.1029/2023EA002918

7 of 19

Figure 1.  (top) CERES EBAF observations of (left) SWCRE and (right) LWCRE. The area-weighted global average is 
shown at the top of each. (lower rows) Differences between model and observations for each model version. The global mean 
difference (bias) and the RMSE are noted at the top of each panel.
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differences (of a few percent globally), however, are small compared to the 
difference between the observations and models. CAM4 markedly underes-
timates cloud cover, while CAM5, CAM6, and E3SM appear to be improved 
but still underestimate global cloud cover by more than 10% compared to 
the passive remote sensing products (ISCCP, MISR) and 7%–10% compared 
to CALIPSO. The values provided by Figure 3 are global; excluding polar 
regions produces qualitatively similar comparisons among observations and 
models.

Figure  4 shows the NMSE for the total cloud cover (60°S–60°N). The 
improvement from CAM4 to later versions is largely due to the large reduction 
in the unconditional error, essentially the bias, as shown by the black-shaded 
part of each bar. The results are mixed when comparing the newer models, 
but across the satellite products the conditional error (medium gray shading) 
is larger in CAM6 than either CAM5 or E3SM. The conditional error arises 
from both phase and amplitude errors, but when the scaled variance ratio 
(red dots in the figure, defined in Section 2) is larger than the NMSE the 
conditional error is mainly from spatial variance. All the newer models show 
this to be the case and therefore show excessive spatial variance, and CAM6 
has the largest SVR.

The maps of Figure  3 suggest that CAM6's and E3SM's excessive spatial 
variability comes from a large increase in cloud cover at high latitudes, espe-

cially the Southern Ocean. With respect to ISCCP, the current-generation CAM6 and E3SM show very differ-
ent errors in the tropical east Pacific: CAM6 shows much too little cloud cover in the stratocumulus regions 
while E3SM shows excessive cloud cover along the equator from South America into the central Pacific. That is 
corroborated by the zonal mean view in Figure 5 comparing the CALIPSO observations to the models for total, 
high, mid-level, and low clouds. At high latitudes, CAM6 and E3SM display strong positive biases in low-level 
clouds. All the models have too little cloud cover at low latitudes, and this predominantly arises from too little 
low-level cloud. The overestimation of high-latitude cloud and underestimation of low-latitude cloud causes the 
spatial variation to be larger than observed, especially apparent for CAM6, leading to the conditional bias shown 
in Figure 4. Similar results are found using the other observational data sets.

3.1.  Histogram Error

So far we have presented diagnostics that illustrate the spatial errors in the model clouds using standard measures 
of cloud cover and CRE. The satellite products and simulators for ISCCP, MODIS, and MISR provide additional 
information in the form of the CTP-τ histograms. The total cloud cover and layer cloud amounts are derived by 
summing over the histogram. As described in Section 2, we can use measures of similarity between the histo-
grams to make an additional assessment of model errors.

Figure 6 shows the EMD metric calculated using the climatology from the satellite products and model simula-
tions. The maps show the EMD at all available locations, but the global average (shown in gray) is restricted to 
±60° latitude for all three products. As discussed next, there appears to be decreasing histogram error through 
model generations. Errors for MISR (rightmost column) are systematically larger than for ISCCP and MODIS, 
but this is a result of the larger histogram grid for MISR (6 × 16 as opposed to 6 × 7) and the simple Euclidean 
cost function that is used in the EMD calculation.

The global average histogram errors decrease through model generations. The improvement is striking between 
CAM4 and the others, while CAM5 and CAM6 show more subtle differences from each other. Only ISCCP data 
was available for E3SM, and it shows the lowest global average EMD. Comparing CAM6 and E3SM, the E3SM 
EMD is smaller in the Southern Ocean and eastern ocean basins while it is larger over much of the tropical 
oceans. All the models, in all three satellite perspectives, show errors associated with trade wind regions. The 
subtropical stratocumulus regions show somewhat smaller errors than the trade wind regions, but do not appear to 
be reduced much through the model generations. Isolating these regimes can be more objective using conditional 
sampling, as discussed next.

Figure 2.  Normalized mean squared error for (left) SWCRE and (right) 
LWCRE between each model version and CERES EBAF for the region 
60°S–60°N. The bars are shaded to show contributions from unconditional 
bias (U), conditional bias (C), and phase error (P) as defined in the text.
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Figure 3.  (top) Total cloud cover (percent) from (left to right) ISCCP, MISR, and CALIPSO. (lower rows) Differences in total cloud cover between the models and the 
observations. Global average values (top row) and bias and RMSE (lower rows) use the global domain and are area-weighted.

Figure 4.  Total cloud cover NMSE by satellite product. Red dots show the scaled variance ratio. The calculation uses 
60°S–60°N.
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Figure 5.  Zonal mean cloud cover from CALIPSO and the CALIPSO simulators: (top to bottom) total, high-, middle-, and 
low-level cloud cover (percent).

Figure 6.  Histogram distance metric, EMD, for the climatology of each model. Averages for ±60° latitude are shown in the 
upper right of each panel (gray lines are included on the maps to note the region for the average). Contours in the left column 
delineate ω500 = 0 (white) and the 75th percentile of ω500 (navy).
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3.2.  Dynamical Regimes

In this section, the COSP-derived cloud cover is cast in the context of monthly dynamical regimes based on 
the mid-tropospheric vertical pressure velocity (ω500). Mid-tropospheric vertical velocity differentiates dynam-
ical regimes by separating regions with net ascent (indicating convectively active regions) from those with net 
descent (aka subsidence) that have a drier free troposphere and often foster cloud-topped boundary layers (Bony 
et al., 2004). As mentioned in Section 2, at monthly timescales, ω500 does reasonably well at partitioning regimes 
in the tropics, but in the extratropics states with weak ω500 are overemphasized. We also concentrate attention 
on ocean locations to avoid the additional complications that are induced by land-atmosphere interactions and 
topographic effects.

Figure 7 shows the SWCRE partitioned by ω500 for all ocean locations (top) as well as tropical oceans (middle) 
and the Southern Ocean (bottom) separately. The histogram of ω500 is also shown (thin lines). Globally, the 
models show overall good agreement with the CERES observations (binned using ERA5 ω500). CAM6 and E3SM 
are noticeably improved in strong convective regimes, and CAM4 is farthest from observations in most regimes. 
This global improvement in CAM6 and E3SM appears to be mainly from tropical oceans (middle panel). The 
models appear relatively close to the observations in the subsidence regimes. Within the small differences, CAM6 
is closest to the CERES observations in weak subsidence regimes, and E3SM agrees very well with observations 
in the strong subsidence regimes (ω500 > 25 hPa d −1). In the Southern Ocean, the models capture the shape of 
the SWCRE(ω500) distribution with CAM6 and E3SM showing a bias toward too much reflection in subsidence 
regimes while CAM4 and CAM5 have SWCRE that is too weak in most regimes. The large-scale circulation, 
measured by the histogram of ω500, is well captured by all the models; partly that should be attributed to these 
simulations being forced by observed SST and sea ice.

Figure 8 shows the vertical structure of clouds in dynamical regimes as observed by CALIPSO (top row). As would 
be expected, convective regimes tend to have more high-level cloud while subsidence regimes are dominated by 
low-level cloud. It is notable that the tropical convective regimes show some indication of a tri-modal structure 
with enhanced cloud fraction below about 2 km, around 7 km, and around 13 km (nb. Johnson et al., 1999). The 
Southern Ocean has more uniform cloud cover in monthly averages because the region is dominated by eastward 
propagating cyclones that mix cloud states on synoptic timescales. Nevertheless, the general tendency for more 

Figure 7.  SWCRE binned by ω500 for the (top to bottom) global ocean (60°S–60°N), tropical ocean (30°S–30°N), and 
southern ocean (30°S–60°N). The histogram of ω500 is shown by thin lines (axis on the right).
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cloud at higher levels in convective regimes is apparent, as is a pronounced peak in cloud fraction at low-levels in 
the very common weak convection and weak subsidence regimes.

The lower rows of Figure 8 show the difference between the observed and simulated CALIPSO clouds. In every 
case, the models show excessive upper-troposphere cloud fraction in strong convective regimes. The height where 
the bias occurs decreases with model generation. The bias becomes smaller in weak convection regimes, but 
remains positive into subsidence regimes indicating that the models have too much cirrus cloud in most condi-
tions. CAM4 appears to have some linear features in its bias, but we have not determined a reason for such a 
pattern. The models also all show a deficit of low-level clouds. Especially relevant for the global energy balance, 
the subsidence regimes over tropical oceans show significant errors, as also suggested in earlier figures.

Biases in the vertical structure of clouds shown in Figure  8 result in biases in the total cloud cover. The 
CALIPSO-based total cloud cover is shown in dynamical regimes in Figure 9. Despite the excess cloud cover at 
upper levels in convective regimes, the models slightly underestimate total cloud fraction in these regimes. Over 
tropical oceans, the models significantly underestimate cloud cover in weak convection and subsidence regimes. 
The model bias is smaller in the southern ocean region in the weak convection and weak subsidence regimes 

Figure 8.  CALIPSO cloud fraction binned by ω500. (top row) The observed cloud fraction, and (lower rows) the difference 
of the observations from each model. Only ocean locations are used, and the global region here is 60°S–60°N; the tropical 
oceans are defined as 30°S–30°N., and the Southern Ocean is 60°S–30°S.
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(except for CAM4); the magnitude of the bias is somewhat sensitive to choice of latitudes, as could be inferred 
by the maps in Figure 3.

The EMD metric provides a concise way to characterize the CTP-τ histogram errors by dynamical regimes. 
Figure 10 shows this for all models compared against ISCCP. For these comparisons, EMD is calculated between 

Figure 9.  CALIPSO total cloud fraction binned by ω500: (top) the global oceans (60°S–60°N), (middle) tropical oceans 
(30°S–30°N), and (bottom) the Southern Ocean (60°S–30°S).

Figure 10.  Average EMD for monthly ISCCP histograms binned by the model's ω500. The EMD is calculated at each grid 
cell for each month that occurs in both the model and observational data.
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the satellite and model data for each month that is available for both (unlike Figure 6 that used the climatological 
average); this provides better sampling across regimes, but introduces more noise associated with internal varia-
bility. Those EMD values are averaged within bins of the model's vertical velocity field. Using EMD as a measure 
of cloud structural error with these dynamical regimes indicates that CAM4 is an outlier, having much larger 
errors across all regimes than the other models. The other models all show similar errors in convective regimes, 
but diverge in the stronger subsidence regimes where E3SM shows smaller errors than CAM5 and CAM6.

To investigate the differences among the CTP-τ histograms that lead to the differences in Figure 10, composite 
histograms are constructed for the tropical ocean using ω500. Figure 11 shows the observed ISCCP histograms for 
convective regimes (ω500 < 0 hPa d −1), weak subsidence regimes (𝐴𝐴 0 < 𝜔𝜔500 < 𝜔𝜔

(75)

500
  hPa d −1), and strong subsid-

ence regimes 𝐴𝐴
(

𝜔𝜔500 > 𝜔𝜔
(75)

500

)

 . Here 𝐴𝐴 𝐴𝐴
(75)

500
 is the 75th percentile of the monthly ω500 distribution, and values are given 

on figure. These regimes are delineated in the climatology in the left column of Figure 10; the strong subsidence 
regime is focused in the eastern ocean basins where subtropical stratocumulus are expected. The composite 
histograms of Figure 11 suggest the models tend to have clouds that are too optically thick, especially in subsid-
ence regimes. The lower EMD for E3SM in the strong subsidence regimes appears to be due to the clouds being 
slightly optically thinner with cloud-top pressure better matching observations while all versions of CAM have 
too much cloud in the lowest pressure bin.

4.  Discussion
This evaluation of cloud cover in CAM and E3SM in simulations forced by observed SST and sea ice provides 
additional context for interpreting the high climate sensitivity of the models. The prescribed SST and ice ensure 
a relatively realistic large-scale circulation, and the PDF of ω500 in Figure 7 confirms that the distribution of 
dynamical regimes is close to that of ERA5. Within these dynamical regimes, each atmosphere model exhibits 
some error in cloud properties. By most measures, CAM5, CAM6, and E3SM are much closer to observations 
than CAM4. It is difficult to definitively state whether the clouds in any of the more recent models is superior, 
as each have relative strengths and weaknesses, but E3SM tends to show slightly better agreement with observa-
tions  than CAM.

Figure 11.  CTP-τ histograms from ISCCP (left column) over tropical oceans, divided into strong subsidence (top), weak subsidence (middle), and convective (bottom) 
regimes. Strong subsidence is delineated by the 75th percentile of the ω500 distribution. The columns to the right show the model minus observation for the same 
sampling; the value of the ω500 75th percentile is reported in the title.
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The weakening of SWCRE in the Southern Ocean under greenhouse gas forcing has been implicated in the 
high climate sensitivity of recent models (e.g., Zelinka et al., 2020). The SWCRE bias in the Southern Ocean 
in CAM6 and E3SM differs from CAM5 (Figure 1), with negative bias in the southern midlatitudes indicating 
more reflected shortwave radiation than CERES observations. This bias is connected to excessive cloud cover, 
as shown in Figure 3. Compared to CALIPSO observations, it appears the excessive cloud cover is associated 
with too much low-level cloud (Figure 5), and that finding is corroborated by the errors being consistent with 
the biases in subsidence regimes in the Southern Ocean (Figures 7 and 8). The histogram errors in the Southern 
Ocean (Figure 10), indicate that the cloud characteristics in E3SM are closer to ISCCP than CAM5 or CAM6. 
Indeed, comparing the composite histograms (not shown, but similar to Figure 11) indicates they have simi-
lar structure, but CAM6 and E3SM have more cloud cover than CAM5 and a bias toward higher τ. Previous 
discussions of the impact of the Southern Ocean region on the high climate sensitivity of CESM2 (e.g., Bjordal 
et al., 2020) have emphasized the relative increase in supercooled water and decrease in cloud ice compared to 
the previous generation CESM1(CAM5); starting from a base state with more liquid reduces the negative cloud 
phase feedback. The liquid and ice water content in CESM2(CAM6) and E3SM have been reported to be more 
consistent with observations than CESM1(CAM5) (e.g., Yang et  al.,  2021). One might argue, therefore, that 
starting from a present day climate with improved mixed-phase clouds in the Southern Ocean, CESM2(CAM6) 
and E3SM reduce a negative cloud phase feedback that is unrealistically strong in CESM1(CAM5). Our results 
may suggest that, separate from the cloud phase feedback, the excessive cloud fraction along with the positive τ 
bias could also contribute to the high climate sensitivity, especially as the Southern Ocean loses substantial cloud 
cover as warming increases (cf., Bacmeister et al., 2020).

The reduced cloud phase feedback in CESM2(CAM6) and E3SM allows the loss of low-level subtropical clouds 
to strongly contribute to the high climate sensitivity (Bacmeister et al., 2020; Golaz et al., 2019). These regions 
have too little cloud cover in all the models (Figures 3 and 8). The histogram error shown in Figure 10 suggests 
the cloud structure in subsidence regimes is best in E3SM. In strong subsidence regimes, E3SM also better 
captures the SWCRE (Figure 7). Taken together, this indicates that E3SM is providing a superior representa-
tion of clouds in tropical subsidence regimes, but is underestimating the cloud cover in the weak subsidence 
regimes (i.e., the regimes that carry the most statistical weight). In tropical, weak-subsidence regimes, CAM6 
has SWCRE consistent with CERES, but also has too little cloud cover. Figure 11 shows that all the models have 
clouds that are too optically thick. Combined with their bias toward too little cloud cover, it indicates that these 
models exhibit the longstanding “too-few-too-bright” bias (Nam et al., 2012). As the CAM6 bias appears to affect 
all tropical subsidence regimes, it appears that both stratocumulus and shallow cumulus regimes in CAM6 are 
afflicted with too little cloud cover that is partially compensated by excessive reflection.

Based on these results, an objective for future model development should be to increase subtropical cloud cover while 
preserving (or improving) the match with CERES EBAF CRE. The cloud cover errors appear especially focused 
in the eastern oceans (Figure 3), possibly providing a clue that the underestimation of clouds is connected with the 
parameterized dynamics of subtropical stratocumulus clouds. In CAM5, the underestimation of stratocumulus was 
suggested to be due to the cloud layer becoming decoupled from the subcloud layer too easily (Medeiros et al., 2012); 
that mechanism is consistent with the errors seen in CAM6, so should be investigated. The errors in the weak subsid-
ence regimes, shown in Figures 7–10, carry a large amount of weight because they cover vast areas of the tropical 
oceans. Improving the representation of shallow cumulus clouds, both in terms of cloud cover and radiative effects, 
also holds the potential to have a substantial impact on the models' climate sensitivity. Parameterizing these boundary 
layer clouds is notoriously challenging, and despite progress (e.g., Kawai & Shige, 2020; Randall, 2013), there remain 
difficulties in capturing interactions among parameterized processes. There are also numerous small-scale processes 
that may be important that are not included in current parameterizations (e.g., Zeng & Li, 2023).

This study provides examples of several methods that help to expose errors in the model cloud climatologies. 
The normalized mean squared error (NMSE) provides a simple method to decompose the climatological error 
into mean bias and spatial errors, and is complementary to the information in Taylor diagrams. Using dynamical 
regimes based on ω500 separates convective and subsidence regimes, allowing an evaluation that does not depend 
on choosing geographical regions. The EMD provides a concise way to investigate errors in cloud properties. 
These methods can be extended to seasonal analysis and aspects of climate variability, and can be elaborated upon 
with additional information (e.g., by also including measures of inversion strength to better separate low-level 
cloud regimes). Use of daily data would also provide a more detailed view, especially in the extratropics. These 
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diagnostics can provide guidance toward targeted analysis and experimentation with particular cloud regimes to 
determine the physical causes of the discrepancies with observations.

Satellite simulators allow a direct, fair comparison between simulated cloud cover and observations. Satellite 
records of cloud cover from multiple platforms are now reaching (or already exceed) 20 years duration, and 
provide a compelling record of cloud cover over the tropics and midlatitudes. With the combination of satellite 
simulators and long-term, high-quality observations, cloud cover can be used as a measure of climate model fidel-
ity. Together, CRE and cloud cover organized by pressure and optical depth provide relatively strong constraints 
on cloud properties in the current climate. As shown here, global atmosphere models have improved over the 
past couple of decades, but still exhibit significant errors in cloud cover. Improving cloud cover while preserv-
ing, or improving, CRE should be a development goal. Other models likely have similarly large errors, and a 
multi-model evaluation should be conducted to understand the spread in cloud errors. Reducing these errors in 
the current climate is likely to have a discernible impact on the spread in estimates of climate sensitivity.

Appendix A:  Abbreviations
Table A1 provides a list of all abbreviations used throughout the text.

Abbreviated Expanded

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation

CAM Community Atmosphere Model

CESM Community Earth System Model

CERES EBAF Clouds and the Earth's Radiant Energy System, Energy Balanced and Filled

CMIP Coupled Model Intercomparison Project

CFMIP Cloud-Feedback Model Intercomparison Project

CLUBB Cloud layers unified by binormals

COSP CFMIP Observation Simulator Package

CMIP Coupled model intercomparison project

E3SM Energy Exascale Earth System Model

EAM E3SM Atmosphere Model

EMD Earth Mover's Distance

ESGF Earth system grid federation

ESMF Earth System Modeling Framework

ERA5 ECMWF reanalysis, generation 5

ISCCP International Satellite Cloud Climatology Project

LWCRE longwave cloud radiative effect

MISR Multi-angle Imaging SpectroRadiometer

MODIS Moderate Resolution Imaging Spectroradiometer

NCO netCDF Operators

NMSE Normalized mean squared error

RMSE Root-mean squared error

SAA South Atlantic Anomaly

SWCRE Shortwave cloud radiative effect

Table A1 
Abbreviations Used in the Text
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Data Availability Statement
The CALIPSO GOCCP (v3.1.2) data was obtained directly from the project website (GOCCP, 2023). ERA5 
monthly averages are available from the Copernicus Climate Change Service (2019). ISCCP-H data were obtained 
in netCDF files on a 1° × 1° latitude-longitude grid from W. Rossow et al. (2016). MISR data was obtained as 
netCDF files from Marchand (2023). The MODIS COSP Level-3 product, MCD06COSP, was downloaded as 
monthly netCDF files from the data archive of the NASA Level-1 and Atmosphere Archive & Distribution 
System (LAADS) Distributed Active Archive Center (DAAC) (MODIS Atmosphere Science Team, 2022). The 
E3SM simulation data is available as part of the CMIP6 archive via the ESGF (Bader et al., 2019). The CAM 
simulation data used in this is available in a zenodo archive (Medeiros et al., 2023). The contents include the 
COSP outputs and ω500 as monthly means. Analysis code used to produce all figures is available in a zenodo 
archive (Medeiros, 2023).
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